Spacecraft Charging Interactions

Dr. Henry B. Garrett
Jet Propulsion Laboratory
California Institute of Technolgy
Pasadena, CA 91109

Copyright 2014. All rights reserved. Jet Propulsion Laboratory California Institute of Technology

Plasma Environment—Surface Charging

PLASMA MOTIONS IN THE EARTH'S ENVIRONMENT

ATS-6 Spectrogram of Geosynchronous Charging

Theory of Spacecraft Charging: A Simple Picture ...

THEORY OF SPACECRAFT CHARGING

THEORY OF SPACECRAFT CHARGING

Theory of Spacecraft Charging: A Simple Example

FOR A NEGATIVELY CHARGED SPACECRAFT:

$$J_{T}(V) = J_{Io} \left(1 - \frac{qV}{KT_{I}} \right) - J_{eo} \left(e^{qV/KT_{e}} \right)$$

TYPICALLY AT GEOSYNCHRONOUS ORBIT:

 $\frac{qV}{KT_I} \sim 0$

FOR CURRENT BALANCE:

$$J_T(V) = 0$$

THIS IMPLIES:

$$V = \frac{-KT_e}{q} \ln \left(\frac{J_{eo}}{J_{Io}} \right)$$

Electron Current versus Spacecraft Potential

30-95 KeV ELECTRON DATA

ATS-6 SPECTROGRAM

NASCAP Spacecraft Charging Code: Differential Potentials

Differential Potentials on SCATHA as Predicted by NASACP

DMSP Low Altitude Spacecraft Charging

Auroral Effects on JPL Ops, Oct. 24, 2003

Lessons Learned: Geophysical Indices Critical to Rapid Anomaly Resolution for JPL Missions

Oct 24: ADEOS-Midori-2 (JPL SeaWinds Instrument) Failed.
Attributed to Spacecraft Surface Charging

Space Weather: Spectrogram

Electron and Proton Geo Plasma Distribution Functions

Two Maxwellian Approach to Charging Environment

TWO MAXWELLIAN DISTRIBUTION FUNCTION

$$F_{2}(v) = \left(\frac{m}{2\pi}\right)^{3/2} \left[\frac{n_{1}}{\left(KT_{1}\right)^{3/2}} e^{\left(\frac{-mv^{2}}{2KT_{1}}\right)} + \frac{n_{2}}{\left(KT_{2}\right)^{3/2}} e^{\left(\frac{-mv^{2}}{2KT_{2}}\right)} \right]$$

TWO MAXWELLIAN PLASMA MOMENTS

NUMBER DENSITY: $M_1 = n_1 + n_2$

NUMBER FLUX: $M_2 = \frac{n_1}{2\pi} \left(\frac{2KT_1}{\pi m} \right)^{1/2} + \frac{n_2}{2\pi} \left(\frac{2KT_2}{\pi m} \right)^{1/2}$

ENERGY DENSITY: $M_3 = \frac{3}{2}n_1KT_1 + \frac{3}{2}n_2KT_2$

ENERGY FLUX: $M_4 = \frac{n_1 m}{2\pi} \left(\frac{2KT_1}{\pi m} \right)^{3/2} + \frac{n_2 m}{2\pi} \left(\frac{2KT_2}{\pi m} \right)^{3/2}$

GEOSYNCHRONOUS PLASMA MODEL

 $M_i(A_p, LT) = (a + bA_p)(c + d\cos[2\pi(LT - e)/24] + f\cos[4\pi(LT - g)/24])$

Geosynchronous 2 Maxwellian Statistics

STATISTICAL DISTRIBUTIONS OF KEY GEOSYNCHRONOUS PARAMETERS

ELECTRON J (nA-cm⁻²) ION J (pA-cm²) ATS-5 % OCCURRENCE ATS-6 SC9 J_| (pA-cm⁻²) J_e (nA-cm⁻²) ELECTRON T2 (keV) ION T2 (keV) * OCCURRENCE T2_e (keV) 70 T2₁ (keV)

LOCAL TIME/Kp VARIATIONS FOR KEY GEOSYNCHRONOUS PLASMA PARAMETERS

Modeled (Kp, LT) vs Observed Geo Plasma Parameters **THE TRUE TO BE THE PARAMETER SHOWN THE PARAMETER SHO

Summary:

- Surface Charging comes in 2 forms:
 - "Absolute" or "Spacecraft to Plasma Ground"
 - "Differential Charging" between surfaces
- Absolute Charging (10-30 KV) roughly proportional to the ambient electron current once a threshold temperature (~2-3 KV) is exceeded→Need Te and Je estimates
- Differential Charging is very spacecraft configuration dependent (spinner vs 3-axis, shadowed surfaces, surface properties, etc.)
- Absolute Charging can have little effect but indicative of possible high levels of Differential Charging
- Differential Charging source of arc discharges ($\Delta V < 100 V$?)
- Space Weather Forecasting useful for Absolute Charging but need spacecraft modeling (NASCAP-2K) for Differential Charging

Worst Case Surface Potentials for Earth Environment in the Absence of Sunlight (Evans et al., 1989)

Recommended Guide to Spacecraft Charging

Title: Guide to Mitigating Spacecraft Charging Effects

Authors: Henry B. Garrett and Albert C. Whittlesey

Publisher: Wiley, 2012

ISBN: 978-1-118-18645-9

BACKUP VIEWGRAPHS

"Analog" Model of Geo Orbit Environment

